Sojourn times in open and closed queueing systems

Onno Boxma
TU Eindhoven

1. Literature review
2. Closed cyclic queues
3. Open tandem queues
1. Literature review

J.R. Jackson ’57
Poisson external arrivals; independent exponential service requirements; single servers; Markovian routing.
\(X_i = \# \) customers at \(Q_i \).

\[
\Pr(X_1 = n_1, \ldots, X_K = n_K) = G \prod_{i=1}^{K} \left(\frac{\Lambda_i}{\mu_i} \right)^{n_i},
\]

with \(\Lambda_i = \lambda_i + \sum_j \Lambda_j p_{ji} \) (throughput at \(Q_i \)).

Product form for queue lengths
Gordon & Newell ’67, Jackson ’63: closed exponential networks

\[P(X_1 = n_1, \ldots, X_K = n_K) = G(N, K) \prod_{i=1}^{K} \left(\frac{\Lambda_i}{\mu_i} \right)^{n_i}, \]

with \(\Lambda_i = \sum_j \Lambda_j p_{ji} \)

Chandy, Muntz, Cohen, Kelly: open & closed

Nodes: exp. FCFS; PS; LCFS-PR; multiserver; IS.
sojourn times in open networks

Reich ’57, Burke ’68:
successive sojourn times of a customer are independent
(so the LST of the joint distribution has a product form ...)

Proof technique: time reversal

Fatal problem: overtaking
(so Q_2, \ldots, Q_{K-1} must be single-server queues)

Walrand & Varaiya ’80:
extension to feedforward networks;
independent sojourn times if no loops
It is easy to find the joint sojourn time LST for $M/M/1 \to \cdot/G/1$, because the successive sojourn times of a customer in the $M/M/1$ queue and the second queue are independent, and because that second queue is an $M/G/1$ queue.

It is \textit{much} harder to find the joint sojourn time LST for $M/G/1 \to \cdot/M/1$ if G is not exponential.
sojourn times in closed networks

Chow '80: cycle time in 2-node exponential network
Application: IBM computer system with level of multiprogramming N
Q_1: CPU; Q_2: I/O
Another application of closed cyclic queues: window flow control Reiser ’79.
Source wants to send packets at rate λ to destination, via channels Q_1, \ldots, Q_K.
$\leq N$ unacknowledged packets in channels Q_1, \ldots, Q_K.
(or: N pallets in a production system)
Another application of closed cyclic queues: window flow control Reiser ’79.
Source wants to send packets at rate λ to destination, via channels Q_1, \ldots, Q_K.
$\leq N$ unacknowledged packets in channels Q_1, \ldots, Q_K.
(or: N pallets in a production system)
$S_i = \text{sojourn time at } Q_i; \ C = S_1 + S_2.$

$$E[e^{-\omega_1 S_1 - \omega_2 S_2}] = \sum_{k=0}^{N-1} P(Z = k)E[e^{-\omega_1 S_1 - \omega_2 S_2} | Z = k]$$
S_i = sojourn time at Q_i; $C = S_1 + S_2$.

\[
\mathbb{E}[e^{-\omega_1 S_1 - \omega_2 S_2}] = \sum_{k=0}^{N-1} \mathbb{P}(Z = k) \mathbb{E}[e^{-\omega_1 S_1 - \omega_2 S_2} | Z = k]
\]

\[
= \sum_{k=0}^{N-1} G\left(\frac{\mu_2}{\mu_1}\right)^k \mathbb{E}[e^{-\omega_1 S_1} | Z = k] \mathbb{E}[e^{-\omega_2 S_2} | S_1; Z = k]
\]
\[S_i = \text{sojourn time at } Q_i; \ C = S_1 + S_2. \]

\[
\mathbb{E}[e^{-\omega_1 S_1 - \omega_2 S_2}] = \sum_{k=0}^{N-1} \mathbb{P}(Z = k) \mathbb{E}[e^{-\omega_1 S_1 - \omega_2 S_2} \mid Z = k]
\]

\[
= \sum_{k=0}^{N-1} G\left(\frac{\mu_2}{\mu_1}\right)^k \mathbb{E}[e^{-\omega_1 S_1} \mid Z = k] \mathbb{E}[e^{-\omega_2 S_2} \mid S_1; Z = k]
\]

\[
= \sum_{k=0}^{N-1} G\left(\frac{\mu_2}{\mu_1}\right)^k \mathbb{E}[e^{-\omega_1 S_1} \mid Z = k]\left(\frac{\mu_2}{\mu_2 + \omega_2}\right)^{N-k}
\]
\[
\mathbb{E}[e^{-\omega_1 S_1 - \omega_2 S_2}] = \sum_{k=0}^{N-1} \mathbb{P}(Z = k) \mathbb{E}[e^{-\omega_1 S_1 - \omega_2 S_2} | Z = k]
\]

\[
= \sum_{k=0}^{N-1} G\left(\frac{\mu_2}{\mu_1}\right)^k \mathbb{E}[e^{-\omega_1 S_1} | Z = k] \mathbb{E}[e^{-\omega_2 S_2} | S_1; Z = k]
\]

\[
= \sum_{k=0}^{N-1} G\left(\frac{\mu_2}{\mu_1}\right)^k \mathbb{E}[e^{-\omega_1 S_1} | Z = k] \left(\frac{\mu_2}{\mu_2 + \omega_2}\right)^{N-k}
\]

\[
= \sum_{k=0}^{N-1} G\left(\frac{\mu_2}{\mu_1}\right)^k \left(\frac{\mu_1}{\mu_1 + \omega_1}\right)^{k+1} \left(\frac{\mu_2}{\mu_2 + \omega_2}\right)^{N-k}.
\]
Schassberger & Daduna '83

\[\mathbb{E}[e^{-\omega C}] = \sum_{\sum j_i = N-1} p(j_1, \ldots, j_K) \prod_{i=1}^{K} \left(\frac{\mu_i}{\mu_i + \omega} \right)^{j_i+1}, \]

with \(p(j_1, \ldots, j_K) = G(N - 1, K) \prod_{i=1}^{K} \left(\frac{1}{\mu_i} \right)^{j_i} \);

queue length distribution right after a departure (cf. the arrival theorem).
\[E[e^{-\omega_1 S_1 - ... - \omega_K S_K}] = \sum_{\sum j_i = N - 1} p(j_1, \ldots, j_K) \prod_{i=1}^{K} \left(\frac{\mu_i}{\mu_i + \omega_i} \right)^{j_i+1}, \]
& Kelly, Konheim ’84

\[
\mathbb{E}[e^{-\omega_1 S_1 - \cdots - \omega_K S_K}] = \sum_{\sum j_i = N-1} p(j_1, \ldots, j_K) \prod_{i=1}^{K} \left(\frac{\mu_i}{\mu_i + \omega_i} \right)^{j_i+1},
\]

\[
cov(S_i, S_j) = \frac{1}{\mu_i \mu_j} \frac{1}{\mu_i + \omega_i} \text{cov}(Z_i, Z_j),
\]

\[
(S_1, \ldots, S_K) \overset{d}{=} \left(\sum_{1}^{Z_1+1} B_{1i}, \ldots, \sum_{1}^{Z_K+1} B_{Ki} \right).
\]

2. Closed cyclic queues

Known (Boxma ’83): distribution of $S_M + S_G$, and even the joint distribution of S_M and S_G.

Unknown: distribution of $S_G + S_M$.
One can show that they do not coincide (when $G \neq M$).
Take \(G = D \) and \(N = 2 \). \(E_\mu \) denotes an \(\exp(\mu) \) r.v.

\[
S_M = \max(0, E^{(1)}_\mu - D) + E^{(2)}_\mu \quad \text{is independent of the previous } S_D.
\]

\[
S_D = \max(0, D - E^{(0)}_\mu) + D \quad \text{is negatively correlated with the previous } S_M.
\]
Recent work (& Daduna): Joint distribution of S_G and S_M. Start from the joint distribution of number of customers X^a_G and residual service time R seen by an arrival at Q_1 of tagged customer K (known $M/G/1 - N$ result).

Consider the situation at time R. Let \tilde{S}_G denote the remaining sojourn time in Q_1, after R (so $S_G = R + \tilde{S}_G$). Let

$$
\psi(k, h, \omega_G, \omega_M) = \mathbb{E}[e^{-\omega_G \tilde{S}_G - \omega_M S_M} | k, h]
$$

where the condition gives the numbers of customers in Q_1 and Q_2, ahead of K, at the start of the first new service after the arrival of K.
One can write:

\[
\mathbb{E}[e^{-\omega_G S_G - \omega_M S_M}] = \mathbb{P}(X^a_G = 0)\psi(0, N - 1, \omega_G, \omega_M) \\
+ \int_{t=0}^{\infty} e^{-\omega_G t} \mathbb{P}(X^a_G = N - 1, R \in (t, t + dt))\psi(N - 2, 1, \omega_G, \omega_M) \\
+ \sum_{k=1}^{N-2} \int_{t=0}^{\infty} e^{-\omega_G t} \mathbb{P}(X^a_G = k, R \in (t, t + dt)) \times \\
\times \left\{ \sum_{l=0}^{N-k-2} e^{-\mu t} \frac{(\mu t)^l}{l!} \psi(k - 1, N - k - 1 - l + 1, \omega_G, \omega_M) \right\} \\
+ \sum_{l=N-k-1}^{\infty} e^{-\mu t} \frac{(\mu t)^l}{l!} \psi(k - 1, 1, \omega_G, \omega_M) \right\}.
\]

So if we have determined all \(\psi(k, h, \omega_G, \omega_M), k = 0, 1, \ldots, N - 2,\)
\(h = 0, 1, \ldots, N - 1,\) we are done.
Determination of $\psi(k, h, \omega_G, \omega_M)$, $k = 0, 1, \ldots, N-2$, $h = 0, 1, \ldots, N-1$.

$\psi(0, h, \omega_G, \omega_M)$ is easy.

$$\psi(k, 0, \omega_G, \omega_M) = G^*(\omega_G)\psi(k - 1, 1, \omega_G, \omega_M).$$

$$\psi(k, h, \omega_G, \omega_M) = \int_{t=0}^{\infty} e^{-\omega_G t} \left\{ \sum_{l=0}^{h-1} e^{-\mu t} \frac{(\mu t)^l}{l!} \psi(k - 1, h - l + 1, \omega_G, \omega_M) \right\} \, dG(t).$$

Notice that we have $\psi(k - 1, \cdot, \omega_G, \omega_M)$ in all terms in the rhs.

Shorthand notation (suppress ω_G and ω_M):

$$\psi(k, h) = \sum_{r=2}^{h+1} \psi(k - 1, r) a(h - r + 1) + \psi(k - 1, 1) b(h).$$
Introduce the vectors, for $k = 0, 1, \ldots, N - 1$:

$$\bar{\psi}(k) := (\psi(k, N - k - 1), \psi(k, N - k - 2), \ldots, \psi(k, 1)),$$

and the $(N - k) \times (N - k - 1)$ matrices $A(N - k), k = 1, \ldots, N - 1$:

$$
\begin{pmatrix}
 a(0) & 0 & 0 & \ldots & 0 & 0 \\
 a(1) & a(0) & 0 & \ldots & \ldots & \ldots \\
 a(2) & a(1) & a(0) & \ldots & \ldots & \ldots \\
 a(3) & a(2) & a(1) & \ldots & \ldots & \ldots \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 \vdots & \vdots & \vdots & \ddots & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & a(0) \\
 a(N - k - 2) & a(N - k - 3) & a(N - k - 4) & \ldots & a(1) & a(0) \\
 b(N - k - 1) & b(N - k - 2) & b(N - k - 3) & \ldots & b(2) & b(1)
\end{pmatrix} \quad (2)
$$
Hence one can write

\[
\bar{\psi}(k) = \bar{\psi}(k - 1)A(N - k) = \bar{\psi}(k - 2)A(N - k + 1)A(N - k) = \ldots = \bar{\psi}(0) \prod_{j=1}^{k} A(N - j),
\]

where \(\bar{\psi}(0)\) is easily determined.

Thus all \(\psi(k, h) = \psi(k, h, \omega_G, \omega_M)\) are known, yielding

\[
E[e^{-\omega_G S_G - \omega_M S_M}].
\]
Blanc, Iasnogorodski and Nain ’88 used a boundary value approach (formulation as a Riemann-Hilbert problem) to obtain

\[\mathbb{P}(X_G^a = j, R \in (t, t + dt), X_M^a = m) \]

as seen by arriving customer \(K \).
Knowing $\mathbb{P}(X_G^a = j, R \in (t, t + dt), X_M^a = m)$ we can write:

$$
\mathbb{E}[e^{-\omega_G S_G - \omega_M S_M}] = \sum_{m=0}^{\infty} \mathbb{P}(X_G^a = 0, X_M^a = m)\psi(0, m, \omega_G, \omega_M)
$$

$$
+ \sum_{j=1}^{\infty} \sum_{m=0}^{\infty} \int_{t=0}^{\infty} e^{-\omega_G t} \mathbb{P}(X_G^a = j, R \in (t, t + dt), X_M^a = m) \times
\times \left\{ \sum_{l=0}^{m-1} e^{-\mu t} \frac{(\mu t)^l}{l!} \psi(j - 1, m - l + 1, \omega_G, \omega_M) + \sum_{l=m}^{\infty} e^{-\mu t} \frac{(\mu t)^l}{l!} \psi(j - 1, 1, \omega_G, \omega_M) \right\}.
$$

(3)

This is the same ψ function, except that it does not stop at $N - 1$.
The recursion (1) for $\psi(k, h, \omega_G, \omega_M)$ allows us, in a straightforward way, to obtain $A(x, y, \omega_G, \omega_M) := \sum_{k=0}^{\infty} \sum_{h=1}^{\infty} x^k y^h \psi(k, h, \omega_G, \omega_M)$:

$$A(x, y, \omega_G, \omega_M) = \frac{\mu}{\mu + \omega_M} \frac{y}{1 - y} \frac{1}{y - \omega_G \mu(1 - y)} \times \left[x \frac{G^*(\omega_G) - \frac{\omega_M}{\omega_M + \mu(1-f)} f}{1 - x G^*(\omega_G)} \left(y G^*(\omega_G) - G^*(\omega_G + \mu(1 - y)) \right) \right] + y \left(G^*(\omega_G) - \frac{\omega_M}{\omega_M + \mu(1 - y)} G^*(\omega_G + \mu(1 - y)) \right).$$

(4)

Here

$$f = f(x, \omega_G) = \mathbb{E}[x^N e^{-\omega_G P}],$$

with P and N the busy period and number served in P in the $M/G/1$ queue Q_1.
Technical problems:
(i) Blanc et al. don’t give $\mathbb{P}(X_G^a = j, R \in (t, t + dt), X_M^a = m)$ and $\mathbb{P}(X_G^a = 0, X_M^a = m)$ but their transforms;
(ii) we get the transform $A(x, y, \omega_G, \omega_M)$ of $\psi(k, h, \omega_G, \omega_M)$ w.r.t. k and h.

Question: How to handle those problems, if you need, e.g.,

$$\sum_{m=0}^{\infty} \mathbb{P}(X_G^a = 0, X_M^a = m)\psi(0, m, \omega_G, \omega_M).$$
Consider the first term in the rhs of (3):

\[
\begin{align*}
\sum_{m=0}^{\infty} \mathbb{P}(X_G^a = 0, X_M^a = m) \psi(0, m, \omega_G, \omega_M) &= \mathbb{P}(X_G^a = 0, X_M^a = 0) \frac{G^*(\omega_G)\mu}{\mu + \omega_M} \\
+ \sum_{m=1}^{\infty} \mathbb{P}(X_G^a = 0, X_M^a = m) \psi(0, m, \omega_G, \omega_M) \\
= \mathbb{P}(X_G^a = 0, X_M^a = 0) G^*(\omega_G) \frac{\mu}{\mu + \omega_M} \\
+ \sum_{m=1}^{\infty} \mathbb{P}(X_G^a = 0, X_M^a = m) \frac{1}{2\pi i} \int_{|z|=1} \frac{\mathbb{A}(0, z, \omega_G, \omega_M)}{z^{m+1}} \, dz \\
= \mathbb{P}(X_G^a = 0, X_M^a = 0) G^*(\omega_G) \frac{\mu}{\mu + \omega_M} \\
+ \frac{1}{2\pi i} \int_{|z|=1} \frac{\mathbb{A}(0, z, \omega_G, \omega_M)}{z} \mathbb{E}\left[\left(\frac{1}{z}\right)^{X_M^a} | X_G^a = 0, X_M^a > 0\right] \, dz.
\end{align*}
\]
Here

\[A(0, z, \omega_G, \omega_M) = \frac{\mu}{\mu + \omega_M} \frac{z}{1 - z} \left[G^*(\omega_G) - \frac{\omega_M}{\omega_M + \mu(1 - z)} G^*(\omega_G + \mu(1 - z)) \right]. \]

\(z = 1 \): removable singularity.

\(\omega_M + \mu(1 - z) = 0 \) gives pole \(z = \frac{\mu + \omega_M}{\mu} \).

Finally, there might be poles of \(G^*(\omega_G + \mu(1 - z)) \).
Consider the contour integral \(\int_{|z|=1} \), or rather the closed contour \(C \) also involving the large circle with radius \(L \to \infty \):

\[
\frac{1}{2\pi i} \int_C \frac{A(0, z, \omega_G, \omega_M)}{z} \mathbb{E}\left[\left(\frac{1}{z}\right)^{X_M^a}(X_G^a = 0, X_M^a > 0)\right] dz.
\]

For \(|z| > 1 \), the only poles are those of \(A(0, z, \omega_G, \omega_M) \). These are \(z = \frac{\mu + \omega_M}{\mu} \), and the poles of \(G^*(\omega + \mu(1 - z)) \).

Now use Cauchy’s theorem. Calculus of residues: the integral over the closed contour equals minus the sum of the residues of all poles.
Final remarks

- Many technicalities have to be handled
- $G(x) = 1 - e^{-\alpha x}$ gives known $M/M/1 - \cdot/M/1$ results
Final remarks

• Many technicalities have to be handled
• \(G(x) = 1 - e^{-\alpha x} \) gives known \(M/M/1 - \cdot /M/1 \) results
• Gideon, I wish you and Josie all the best!